

Tetrahedron Letters 43 (2002) 4499-4502

Baylis–Hillman reactions of *N*-arylidenediphenylphosphinamides with methyl vinyl ketone, methyl acrylate, and acrylonitrile

Min Shi* and Gui-Ling Zhao

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

Received 14 March 2002; revised 18 April 2002; accepted 25 April 2002

Abstract—We have found that in the Baylis–Hillman reactions of *N*-arylidenediphenylphosphinamides **1** with methyl vinyl ketone (MVK), methyl acrylate or acrylonitrile, the Lewis base and solvent can significantly affect the reaction rate. Using PPh₃ as Lewis base in the reaction of **1** with MVK in DMF, THF or MeCN, the normal Baylis–Hillman adduct **2** was formed in very high yield. In the Baylis–Hillman reaction of **1** with methyl acrylate, the Lewis base Ph₂PMe must be used in order to get a high yield of the Baylis–Hillman adduct **3**. On the other hand, for the reaction of *N*-arylidenediphenylphosphinamides **1** with acrylonitrile, DABCO is the best Lewis base giving the corresponding Baylis–Hillman adducts **4** in high yields. © 2002 Elsevier Science Ltd. All rights reserved.

Since Baylis and Hillman first reported the reactions of acetaldehyde with ethyl acrylate and acrylonitrile in the presence of catalytic amounts of a strong Lewis base such as 1,4-diazabicyclo[2.2.2]octane (DABCO) in 1972,¹ the Baylis–Hillman reaction has made great progress,¹ and now includes a catalytic asymmetric version.² However, in this very simple and useful reaction, only aldehydes^{1–3} and *N*-benzylidene-4-methylbenzene-sulfonamides⁴ are in general use as the substrates for reaction with α,β -unsaturated ketones, nitriles or esters. Herein, we wish to report an unprecedented Baylis–Hillman reaction of *N*-arylidenediphenylphosphinamides **1** with methyl vinyl ketone (MVK), methyl acrylate, and acrylonitrile in the presence of various Lewis bases.⁵

The promoters and solvents for the Baylis–Hillman reaction of *N*-arylidenediphenylphosphinamide **1a** with

MVK were systematically examined first (Scheme 1, Table 1). We found that the Lewis base and solvent played very important roles in this reaction. For example, using 10 mol% of PPh₃ as the Lewis base in DMF or MeCN, the reaction proceeded very well to give the normal Baylis-Hillman adduct 2a in 81% and 99% yields, respectively (Table 1, entries 2 and 4). Using Ph₂PMe as the Lewis base, 2a was produced in a relatively low yield (76%) under the same conditions (Table 1, entries 5 and 6). Using PBu₃ or PhPMe₂ as the Lewis base, only traces of 2a were produced along with many unidentified products (Table 1, entries 6 and 7). The well established strong Lewis base, DABCO, gave a lower yield of 2a under the same conditions as those used for PPh₃ (Table 1, entries 8-11). In dichloromethane, 2a was obtained in moderate yield (66%) (Table 1, entry 11). In all these cases, the normal Baylis–Hillman adduct **2a** was formed exclusively.

Scheme 1.

Keywords: *N*-arylidenediphenylphosphinamide; Lewis base; Baylis–Hillman reaction; methyl vinyl ketone (MVK); methyl acrylate; acrylonitrile. * Corresponding author. Fax: 86-21-64166128; e-mail: mshi@pub.sioc.ac.cn

Table 1. Baylis–Hillman reactions of *N*-benzylidenediphenylphosphinamide **1a** (1.0 equiv.) with MVK (1.0 equiv.) in the presence of a Lewis base (10 mol%) at room temperature

Entry	Lewis base	Solvent	Time (h)	Yield (%) ^a , 2a
1	PPh ₃	THF	48	52
2	PPh ₃	DMF	48	81
3	PPh ₃	CH ₂ Cl ₂	72	27
4	PPh ₃	MeČN	48	99
5	Ph ₂ PMe	MeCN	72	76
6	PhPMe ₂	MeCN	72	Trace
7	PBu ₃	MeCN	72	Trace
8	DABCO	THF	144	30
9	DABCO	DMF	144	37
10	DABCO	MeCN	144	35
11	DABCO	CH_2Cl_2	144	66

^a Isolated yields.

For Baylis-Hillman reactions of other N-arylidenediphenylphosphinamides 1 with MVK using PPh₃ as Lewis base under the optimized reaction conditions, the Baylis–Hillman adducts 2 were obtained in good to excellent yields (Scheme 2). The results are summarized in Table 2. For N-arylidenediphenylphosphinamides 1 having an electron-donating group on the phenyl ring, the corresponding Baylis-Hillman adducts 2b and 2c were obtained in low yields in DMF (Table 2, entries 1 and 2),⁶ but in MeCN or THF, 2b and 2c were formed in 77 and 80% yields (Table 2, entries 8 and 10) or 90 and 70% yields (Table 2, entries 9 and 11), respectively.⁷ For N-arylidenediphenylphosphinamides 1 having an electron-withdrawing group on the phenyl ring, the Baylis-Hillman adducts 2d-h were produced in good yields (Table 2, entries 3-7, 12-15). In some cases, the reactions proceeded quantitatively.

We also examined the Baylis–Hillman reactions of *N*-arylidenediphenylphosphinamides **1** with methyl acrylate in the presence of various Lewis bases (Scheme 3). Using PPh₃ or DABCO as the Lewis base, the reaction was very sluggish (Table 3, entries 1–7), but we were pleased to find that using Ph₂PMe as the Lewis base in dichloromethane gave the corresponding Baylis–Hillman adduct **3a** in 71% yield (Table 3, entry 10).⁸ It should be emphasized that when using PBu₃ or PhPMe₂ as the Lewis base, **3a** was obtained only in traces along with many unidentified products (Table 3, entries 8 and 9).

Table 2. Baylis–Hillman reactions of *N*-arylidenediphenylphosphinamide (1.0 equiv.) with MVK in the presence of PPh_3 (10 mol%)

Entry	Ar	Solvent	Time (h)	Yield (%) ^a , 2
1	p-EtC ₆ H ₄	DMF	48	20
2	p-MeOC ₆ H ₄	DMF	72	19
3	p-FC ₆ H ₄	DMF	48	76
4	$p-ClC_6H_4$	DMF	48	67
5	p-BrC ₆ H ₄	DMF	48	99
6	$p-NO_2C_6H_4$	DMF	4	60
7	C ₆ H ₅ CH=CH	DMF	72	67
8	$p-EtC_6H_4$	MeCN	48	77
9	$p-EtC_6H_4$	THF	48	90
10	p-MeOC ₆ H ₄	MeCN	48	80
11	p-MeOC ₆ H ₄	THF	48	70
12	p-FC ₆ H ₄	MeCN	36	99
13	$p-ClC_6H_4$	MeCN	48	87
14	p-BrC ₆ H ₄	MeCN	24	99
15	$p-NO_2C_6H_4$	MeCN	48	99

^a Isolated yields.

For the Baylis–Hillman reactions of other *N*-arylidenediphenylphosphinamides **1** with methyl acrylate using Ph_2PMe as the Lewis base under the optimized reaction conditions, the Baylis–Hillman adducts **3** were obtained in good to excellent yields (Scheme 4). The results are summarized in Table 4. The aliphatic Baylis– Hillman adduct **3h** was formed in moderate yield (Table 4, entry 7).

On the other hand, for the reaction of *N*-arylidenediphenylphosphinamides **1** with acrylonitrile, we examined many Lewis bases in the same manner as described above, but we found that only DABCO can effectively catalyze this reaction to give the corresponding Baylis–Hillman adduct **4** in high yield (Scheme 5, Table 5). Using Ph₂PMe, PhPMe₂ or PBu₃ as the Lewis base, the reaction solution immediately became dark in color giving **4** in lower yields along with many unidentified products.

In conclusion, we have found that in the Baylis–Hillman reaction of *N*-arylidenediphenylphosphinamides **1** with MVK, methyl acrylate or acrylonitrile, the Lewis base and solvent can significantly affect the reaction. Using PPh₃ as the Lewis base in the reaction of **1** with MVK in DMF, THF or MeCN, the normal Baylis– Hillman adduct **2** was formed in very high yields. In the

b: Ar = p-EtC₆H₄, c: Ar = p-MeOC₆H₄, d: Ar = p-FC₆H₄, e: Ar = p-ClC₆H₄, f: Ar = p-BrC₆H₄, g: Ar = p-NO₂C₆H₄, h: $Ar = C_6H_5$ -CH=CH.

Scheme 3.

Table 3. Baylis–Hillman reactions of *N*-benzylidenediphenylphosphinamide **1a** (1.0 equiv.) with methyl acrylate (1.0 equiv.) in the presence of a Lewis base (10 mol%) at room temperature

Entry	Lewis base	Solvent	Time (h)	Yield (%) ^a , 3a
1	PPh ₃	DMF	48	Trace
2	PPh ₃	CH_2Cl_2	480 (20 days)	12
3	DABCO	THF	120	12
4	DABCO	DMF	120	12
5	DABCO	CH_2Cl_2	120	Trace
6	DABCO	MeCN	120	26
7	DABCO	MeCN ^b	120	58
8	PhPMe ₂	MeCN	72	Trace
9	PBu ₃	CH_2Cl_2	72	Trace
10	Ph ₂ PMe	CH_2Cl_2	42	71
11	Ph ₂ PMe	THF	42	39
12	Ph ₂ PMe	MeCN	42	36
13	Ph ₂ PMe	DMF	42	30

^a Isolated yields.

^b The reaction was carried out at 60°C.

Baylis–Hillman reaction of 1 with methyl acrylate, the Lewis base Ph₂PMe must be used in order to give 3 in high yields. On the other hand, for the reaction of *N*-arylidenediphenylphosphinamides 1 with acrylonitrile, DABCO is the best Lewis base giving the corresponding Baylis–Hillman adduct 4 as the sole product

Table 4. Baylis–Hillman reactions of *N*-arylidenediphenylphosphinamide (1.0 equiv.) with methyl acrylate in the presence of Ph_2PMe (10 mol%)

Entry	Ar	Time (h)	Yield (%) ^a , 3	
1	p-EtC ₆ H ₄	96	50	_
2	p-MeOC ₆ H ₄	96	78	
3	$p-FC_6H_4$	42	92	
4	$p-ClC_6H_4$	48	50	
5	p-BrC ₆ H ₄	48	60	
6	p-NO ₂ C ₆ H ₄	4	63	
7	C ₆ H ₅ CH=CH	42	40	

^a Isolated yields.

in high yield. Efforts are underway to elucidate mechanistic details of this reaction and the key factors required from the Lewis base for the different substrates for the Baylis–Hillman reactions. Work along these lines is currently in progress.

Acknowledgements

We thank the State Key Project of Basic Research (Project 973) (No. G2000048007) and the National Natural Science Foundation of China for financial support (20025206). We also thank the Inoue Photochirogenesis Project (ERATO, JST) for chemical reagents.

b: Ar = p-EtC₆H₄, c: Ar = p-MeOC₆H₄, d: Ar = p-FC₆H₄, e: Ar = p-ClC₆H₄, f: Ar = p-BrC₆H₄, g: Ar = p-NO₂C₆H₄, h: $Ar = C_6H_5$ -CH=CH.

Scheme 4.

Table 5. Baylis–Hillman reactions of *N*-benzylidenediphenylphosphinamide **1a** (1.0 equiv.) with acrylonitrile (1.0 equiv.) in the presence of a Lewis base (10 mol%) at room temperature

Entry	Lewis base	Time (h)	Yield (%) ^a , 4a
1	PPh ₃	24	Trace
2	DABCO	24	80
3	PhPMe ₂	24	24
4	PBu ₃	10	60
5	Ph ₂ PMe	24	50

^a Isolated yields.

References

- (a) Baylis, A. B.; Hillman, M. E. D. Ger. Offen. 1972, 2,155,113; Chem. Abstr. 1972, 77, 34174q; Hillman, M. E. D.; Baylis, A. B. US Patent, 1973, 3,743,669; (b) Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815.
- 2. (a) Ciganek, E. Org. React. 1997, 51, 201; (b) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001; (c) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653; (d) Brzezinski, L. J.; Rafel, S.; Leahy, J. M. J. Am. Chem. Soc. 1997, 119, 4317; (e) Miyakoshi, T.; Saito, S. Nippon Kagaku Kaishi 1983, 1623; Chem. Abstr. 1984, 100, 156191g; (f) Marko, I. E.; Giles, P. G.; Hindley, N. J. Tetrahedron 1997, 53, 1015; (g) Richter, H.; Jung, G. Tetrahedron Lett. 1998, 39, 2729; (h) Barrett, A. G. M.; Cook, A. S.; Kamimura, A. J. Chem. Soc., Chem. Commun. 1999, 2533; (i) Kunidig, E. P.; Xu, L. H.; Romanens, P.; Bernardinelli, G. Tetrahedron Lett. 1993, 34, 7049; (j) Aggarwal, V.; Mereu, A.; Tarver, G. J.; MaCague, R. J. Org. Chem. 1998, 63, 7183; (k) Kawamura, M.; Kobayashi, S. Tetrahedron Lett. 1999, 40, 1539; (1) Kataoka, T.; Iwama, T.; Tsujiyama, S.; Iwamura, T.; Watanabe, S. Tetrahedron 1998, 54, 11813; (m) Kataoka, T.; Iwama, T.; Kinoshita, S.; Tsujiyama, Y.; Iwamura, T.; Watanabe, S. Synlett 1999, 197; (n) Kataoka, T.; Iwama, T.; Tsujiyama, S.; Kanematsu, K.; Iwamura, T.; Watanabe, S. Chem. Lett. 1999, 257; (o) Kataoka, T.; Iwama, T.; Tsujiyama, S. J. Chem. Soc., Chem. Commun. 1998, 197; (p) Ono, M.; Nishimura, K.; Nagaoka, Y.; Tomioka, K. Tetrahedron Lett. 1999, 40, 1509; (q) Li, G.-G.; Wei, H.-X.; Gao, J. J.; Caputo, T. D. Tetrahedron Lett. 2000, 41, 1; (r) Kataoka, T.; Kinoshita, H.; Iwama, T.; Tsujiyama, S.; Iwamura, T.; Watanabe, S.; Muraoka, O.; Tanabe, G. Tetrahedron 2000, 56, 4725; (s) Li, G.-G.; Gao, J.; Wei, H.-X.; Enright, M. Org. Lett. 2000, 2, 617; (t) Shi,

M.; Jiang, J.-K.; Feng, Y.-S. Org. Lett. 2000, 2, 2397; (u) Shi, M.; Feng, Y.-S. J. Org. Chem. 2001, 66, 406; (v) Shi, M.; Jiang, J.-K.; Cui, S.-C.; Feng, Y.-S. J. Chem. Soc., Perkin Trans. 1 2001, 390; (w) Shi, M.; Jiang, J.-K. Tetrahedron 2000, 56, 4793; (x) Shi, M.; Li, C.-Q.; Jiang, J.-K. J. Chem. Soc., Chem. Commun. 2001, 833.

- Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219.
- 4. (a) Perlmutter, P.; Teo, C. C. Tetrahedron Lett. 1984, 25, 5951; (b) Takagi, M.; Yamamoto, K. Tetrahedron 1991, 47, 8869; (c) Bertenshow, S.; Kahn, M. Tetrahedron Lett. 1989, 30, 2731; (d) Shi, M.; Xu, Y.-M. J. Chem. Soc., Chem. Commun. 2001, 1876; (e) Shi, M.; Xu, Y.-M. Eur. J. Org. Chem. 2002, 696.
- N-Arylidenediphenylphosphinamide 1 was prepared according to the literature: (a) Jennings, W. B.; Lovely, C. J. *Tetrahedron* 1991, 47, 5561; (b) Yamada, K.; Harwood, S. J.; Groger, H.; Shibasaki, M. *Angew. Chem., Int. Ed.* 1999, 3504.
- 6. Typical reaction procedure for the Baylis–Hillman reaction of **1a** with MVK: To a Schlenk tube with **1a** (76 mg, 0.25 mmol) and triphenylphosphine (13.1 mg, 0.050 mmol) in DMF (0.5 mL) was added MVK (25.8 mg, 24 μ L, 0.30 mmol) under an argon atmosphere and the reaction mixture was stirred for 48 h at room temperature (20°C). The reaction mixture was washed with water (3×10 mL) and extracted with dichloromethane (2×10 mL). The organic layer was dried over anhydrous Na₂SO₄, the solvent removed under reduced pressure and the residue purified by silica gel column chromatography (eluent: EtOAc/petroleum=1/4) to give **2a** (72 mg, 81%) as a colorless solid.
- 7. The spectral data of **2e**: mp 161–164°C; IR (KBr) ν 1674 cm⁻¹ (C=O); ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.28 (3H, s, CH₃), 3.37 (1H, dd, J_{CH-NH} =11.1 Hz, J_{P-N-H} =8.4 Hz, NH), 4.87 (1H, t, J_{CH-NH} =11.1 Hz, J_{P-N-CH} =11.1 Hz, CH), 6.11 (1H, s, =CH), 6.21 (1H, s, =CH), 7.20–7.31 (4H, m, Ar), 7.37–7.56 (6H, m, Ar), 7.80–7.90 (4H, m, Ar); MS (EI) m/e 409 (M^+ , 4.82), 340 (M^+ –69, 12.31), 208 (M^+ –201, 100); [found: C, 67.44; H, 5.36; N, 3.38%. C₂₃H₂₁ClNO₂P requires: C, 67.40; H, 5.17; N, 3.42%].
- 8. The spectral data of **3e**: mp 173–175°C; IR (KBr) ν 1719 cm⁻¹ (C=O); ¹H NMR (CDCl₃, 300 MHz, TMS) δ 3.65 (3H, s, OCH₃), 4.33 (1H, dd, J_{CH-NH} =11.4 Hz, J_{P-N-H} = 8.4 Hz, NH), 5.04 (1H, t, J_{CH-NH} =11.4 Hz, J_{P-N-CH} =11.4 Hz, CH), 5.86 (1H, s, =CH), 6.34 (1H, s, =CH), 7.20–7.31 (4H, m, Ar), 7.37–7.56 (6H, m, Ar), 7.80–7.95 (4H, m, Ar); MS (EI) m/e 425 (M^+ , 9.54), 356 (M^+ –69, 18.65), 224 (M^+ –201, 100); [found: C, 64.67; H, 5.00; N, 3.16%. C₂₃H₂₁ClNO₃P requires: C, 64.87; H, 4.97; N, 3.29%].